semiconductors - ορισμός. Τι είναι το semiconductors
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι semiconductors - ορισμός

MATERIAL THAT HAS ELECTRICAL CONDUCTIVITY INTERMEDIATE TO THAT OF A CONDUCTOR AND AN INSULATOR
Semiconductors; Semi-Conductors; Semi-conductor; Semiconductor physics; Semiconducting material; List of semiconductor devices; Semiconductor material; Semiconducting; Semi conductor; Semiconductive; Electronic Materials; Semiconduction; Semicon; Electronic materials; Semi-conducting; Semiconductivity; Semi conductors; Physics of semiconductors; Electronic substance
  • [[John Bardeen]], [[William Shockley]] and [[Walter Brattain]] developed the bipolar [[point-contact transistor]] in 1947.
  • [[Karl Ferdinand Braun]] developed the [[crystal detector]], the first [[semiconductor device]], in 1874.
  • ingot]] of [[monocrystalline silicon]]
  • [[Silicon]] crystals are the most common semiconducting materials used in [[microelectronics]] and [[photovoltaics]].

Magnetic semiconductor         
TYPE OF FUNCTIONAL SEMICONDUCTING OXIDE WITH APPLICATIONS IN SPINTRONICS
Magnetic semiconductors; Dilute magnetic semiconductor; Diluted magnetic semiconductor; ZnO-based diluted magnetic semiconductors; ZnO based Diluted Magnetic Semiconductors; Dilute magnetism
Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism (or a similar response) and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction.
semiconductor         
¦ noun a solid, e.g. silicon, whose conductivity is between that of an insulator and a conductive metal and increases with temperature.
Derivatives
semiconducting adjective
semiconductor         
<electronics> A material, typically crystaline, which allows current to flow under certain circumstances. Common semiconductors are silicon, germanium, gallium arsenide. Semiconductors are used to make diodes, transistors and other basic "solid state" electronic components. As crystals of these materials are grown, they are "doped" with traces of other elements called donors or acceptors to make regions which are n- or p-type respectively for the electron model or p- or n-type under the hole model. Where n and p type regions adjoin, a junction is formed which will pass current in one direction (from p to n) but not the other, giving a diode. One model of semiconductor behaviour describes the doping elements as having either free electrons or holes dangling at the points in the crystal lattice where the doping elements replace one of the atoms of the foundation material. When external electrons are applied to n-type material (which already has free electrons present) the repulsive force of like charges causes the free electrons to migrate toward the junction, where they are attracted to the holes in the p-type material. Thus the junction conducts current. In contrast, when external electrons are applied to p-type material, the attraction of unlike charges causes the holes to migrate away from the junction and toward the source of external electrons. The junction thus becomes "depleted" of its charge carriers and is non-conducting. (1995-10-04)

Βικιπαίδεια

Semiconductor

A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. Its conducting properties may be altered in useful ways by introducing impurities ("doping") into the crystal structure. When two differently doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers, which include electrons, ions, and electron holes, at these junctions is the basis of diodes, transistors, and most modern electronics. Some examples of semiconductors are silicon, germanium, gallium arsenide, and elements near the so-called "metalloid staircase" on the periodic table. After silicon, gallium arsenide is the second-most common semiconductor and is used in laser diodes, solar cells, microwave-frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

Semiconductor devices can display a range of different useful properties, such as passing current more easily in one direction than the other, showing variable resistance, and having sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping and by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion.

The conductivity of silicon is increased by adding a small amount (of the order of 1 in 108) of pentavalent (antimony, phosphorus, or arsenic) or trivalent (boron, gallium, indium) atoms. This process is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of a semiconductor can be improved by increasing its temperature. This is contrary to the behavior of a metal, in which conductivity decreases with an increase in temperature.

The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of charge carriers in a crystal lattice. Doping greatly increases the number of charge carriers within the crystal. When a doped semiconductor contains free holes, it is called "p-type", and when it contains free electrons, it is known as "n-type". The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor device crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior. Using a hot-point probe, one can determine quickly whether a semiconductor sample is p- or n-type.

A few of the properties of semiconductor materials were observed throughout the mid-19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics led in turn to the invention of the transistor in 1947 and the integrated circuit in 1958.

Παραδείγματα από το σώμα κειμένου για semiconductors
1. "California is already a leader in biotech, software and semiconductors.
2. Then there is Tower Semiconductors, the black sheep.
3. But Motorola sold its entire semiconductors business in April 2004.
4. By Zuri Dar The as yet unfulfilled promise of the Israeli microchip industry, Saifun Semiconductors, is setting up a subsidiary – Tulip Semiconductors – that will focus on selling development services to the non–volatile memory (NVM) market.
5. Analysts attributed the surge on the Street to strong trends in semiconductors during August.